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AUTOMATA THEORY

FAST EVALUATION OF THE HURWITZ ZETA FUNCTION AND
DIRICHLET L-SERIES!

E. A. Karatsuba UDC 621.391.1:681.327

Based on the FEE method, an algorithm of fast evaluation of the Hurwitz zeta function ((s,a) for integer s
and algebraic a is proposed. Fast evaluation of Dirichlet L-series is considered. The evaluation complexity
ts close to the best possible.

1. Introduction

In [1-7], algorithms for fast evaluation of elementary and higher transcendental functions as well as the
classical constants e, 7w, and the Euler constant vy are presented. They are based on the fast evaluation
method for functions of the type of the Siegel E-function (FEE method) with complexity close to the best
possible.

Throughout what follows, we assume that the numbers are written in the binary notation.

By the multiplication complexity of two n-digit integer numbers, we mean the number M (n) of elemen-
tary (bit) operations required to compute their product.

The number of bit operations required to evaluate a function y = f(z) accurate to 27" at a point z = z,
of its domain of definition is denoted by s;(n) and called the evaluation complexity of f(z) at z = z,.

In [1-7], it is proved that the evaluation complexity of the elementary transcendental functions and con-
stants mentioned above using the FEE method as well as the evaluation complexity of higher transcendental
functions for algebraic values of arguments is

sp(n) = O(M(n)log?n).

The history of fast evaluation dates from A. N. Kolmogorov [8], who posed the problem of bounding
M (n) above. In [9-11], algorithms of fast multiplication are presented; details of practical implementation
of these algorithms are described in [12]. The first algorithms of fast evaluation of elementary algebraic
elementary transcendental, and some higher transcendental functions are presented in [13-15].

H

2. Lemma on the representation of the Hurwitz zeta function as a series

In {6], application of the FEE method to the fast evaluation of the Riemann zeta function {(s) for integer
values of the argument s is described in detail. For fractional values of s, methods of fast evaluation of ((s)
have not yet been found. However, fast evaluation of the Hurwitz zeta function

C(s,a):z(—l/:—a)s, a>0, (n

v=0
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for integer values of s, s > 2, and algebraic values of a has been proved to be possible. Note that by (1),
evaluation of {(s,a) for a > 1, a = [a] + {a}, 0 < {a} < 1, can easily be reduced to the evaluation of ((s, a)
for 0 < a < 1 (the case of integer values of a is studied in [6]).

Considering evaluation of {(s,a) accurate to 27", we assume in what follows that n — +o00 and s and
a are arbitrary fixed numbers, s > 2, s is even, a 1s a real algebraic number, 0 < a < 1.

As in [6], let us first prove two auxiliary lemmas. Their proofs are similar to those of the corresponding
lemmas from [6].

Lemma 1. Let ny,ny,...,n, be nonnegative inlegers and
D S | () ®
. nylng! -

nit+na+...4fng=t =1
ny+2ns+... +sn,=s
(o8]

Jj = /e-‘ta-llogfzdt. (3)
0

Then we have the identily

d llz_
R (1)

aS

ProoF. By the definition of the Euler gamma function I'(z) (see, e.g., [16, p. 51}), we have

P(z) = 1o~ (ﬁ (1+ g)“ﬁ) , (5)

where 7 is the Euler constant. From (5), we find

—Fl(x):7+-3;+m ( : l>. (6)
v=1

r+v v

Taking the (s — 1)st derivative of (6) with respect to z and then substituting = = a, we obtain

dsm! ([ T'(x) -1
= (R = (S s) "

Using the formula for the derivative of a composite function (see, e.g., [17, pp. 116-117}), we find
ds—l F’(.’l))
dzs-! L(z) /|24

w2, e LGEel) e

i=1 ny4na+...4ng=:
nyi+2na4 .. 4sng=s
nyna,..n,>0 are integer

Now, let us use the integral representation of I'(z) (see, e.g., [16, p. 53]):
[(z) = /e_‘t"_l dt, Re(z—-1)> -1 (9)
0

Taking the jth derivative with respect to 2 under the integral sign in (9) and setting then z = a, we obtain

o

= /e—‘t“—‘logftdt. (10)

0
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To upper estimate the sum A;-’ defined by (15), represent it as a sum of two summands

oC

1
" 1
A;-'- /tk+a Vog tdt + Z ) /t“‘“ Yoglt di. (18)
0

k=r+1 k=r+1

Each of the two summands in (18) is a series with alternating signs whose terms are monotone decreasing
in absolute value and tend to zero, Taking into account that 0 < a < 1, we can upper estimate these terms
and thus obtain from (18) the following estimate for A}

n

1

1 . . 1

1" r+a +a r+2
1

It follows from (12) and (13) that J; can be represented as
Ji = A +96;, (20)

where the sum A; is defined by (14), and for 6;, 1 < j < s, n > 2slog2s, r > n, we have from (16), (17),
and (19) the estimate

)
16;1 < ge_"log’n+ (14 n"*2log*n). (21)

1
r+2)!
Taking into account that % < (;)r and setting r > 3n, we obtain from (21) for #; that

16;] < 27" log°n. (22)
For s satisfying (11), we obtain from (22) the estimate
l0;] < 27" : (23)

Consider the sum A} defined by (14). Let us replace the integrals in (14) by their values:

n

/tk“_l logitdt =
k+a

0 mz=0

k+a

3

It follows from (20) and (23) that in order to evaluate the integral
= /e"‘t“”‘logjtdt, 0<a<l,
0

accurate to 27", 1t suffices to evaluate with the same accuracy the sum

~ (=1)* 1) n jllog?~™n
A=) = Z(— " (24)
= (j —m)!i(k +a)™
for

r>3n, n>2slog2s, s>2, 1<j<s. (25)

Let us rewrite (24) in the form

i Nogd—m

/‘_naz (=1) mJ og nS'm, (26)

)1

m=0



From (1)-(3) and (7)-(10), the validity of (4) follows.

3. Lemma on the fast evaluation of an integral of a special kind

Let sy(n) be the evaluation complexity of the integral J; defined by (3) for a natural parameter j, j =
1,2,...,s. Then the following lemma holds.

Lemma 2.
sy(n) = O(M(n)log?n).

ProoF. We assume that

n > 2slog2s, s>2. (11)
Represent the integral (3) as a sum of two integrals
Jj = A;j + Bj, (12)
where
A; = /e"t“_l log’~'tdt,
0

[e.o]

B = /e“t“”‘logf"‘tdz.

n

Taking a Taylor series expansion of ¢ in powers of ¢, 0 <t < n, let us represent A; as a sum

Aj = Af + AL, (13)
where

. _l)k [ a— j

Ay = (kI /t“+ 'og it dt, (14)
k=0 ’ 0

" > (—l)k f k+a-1 j

Al =y | logtdt, (15)
k=r+1 0

r > n, r is a natural number.
Let us upper estimate B; and AY. Since 0 < a < 1, we have

oo

B; < Bj, B;= /e—‘logjidt. (16)

n

Taking account of (11), let us upper estimate the integral B;, 1 € j < s, integrating it by parts and
successively passing to the estimates

B = —c'logit|” +j/e"t'llogj'ltdt <.
. 1 5
S e~ loan___z_O.'.gl_ S _(g_"logsn. (17)
] 3
nlogn
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where
k

S —i(”l)k n (27)
mE LT (ko

Let us evaluate S, using the FEE process.

4. Continuation of the proof of Lemma 2 for the case of rational a

) . a : .
Assume first that a 1s a rational number, a = —-l, (a1,az) = 1. Let us rewrite (27) in the form

az
Sm = aytls), (28)
where .
S = Z(_l)k _l_______f_k_____ (29)
m ~k"0 k!(a2k+a1)"‘+l’
and evaluate the sum S,. Take
r+1=27 (¢>1, 2771 < 3n<29) (30)

terms of the series (29). Let the numbers S, 4)_,(0), v =0,1,...,r, be defined by the equalities
nf—v

(r — v)l(az(r — v) 4+ a )M+l

Sear-u(0) = (=1)

By the definition of SJ,, we have
Sre = S1(0) + S2(0) + . .. + Sr41(0).

Let us evaluate S/, in q steps of the FEE process described in [3-6] in detail. Namely, successively joining
at each step the summands S, in pairs and taking the common multiplier out of the parentheses, we
compute at each step only the values of the expressions inside the parentheses (these values are integer).
The evaluation process for the sum S}, defined by (29) is quite similar to that described in detail in [6]
for the corresponding sum related to the series and integral concerned with the Riemann zeta function.
Therefore, we do not elaborate on this, noting only that the evaluation complexity of S, is estimated as in
[6] and amounts at the ith step to

0] (i M(27 log r)) + O(M(2'mlog (nr)))
r=1
operations. Summing up the number of operations over all steps i, 1 < i < ¢, and adding to this the number
O(rlogrM(logr) + M(rlogr) + M(2!mlogr))
of operations required at the final step for dividing the obtained integer number by the integer
r!(a2r + ar)(az(r — 1)+ a1) ... (az + o)) ] ™,
we find from (28)-(30) that the evaluation of S, requires
O(M(n)log2n) (31)

operations,
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5. Continuation of the proof of Lemma 2 for the case of algebraic a.
Theorem on the fast evaluation of the Hurwitz zeta function

nsider now evaluation of the sum S,, defined by (27) for a real algebraic value of a. We assume that
ven both in an explicit form and by a polynomial with integer coefficients such that a is its root
such a polynomial, one can quickly find the value of its root using, for instance, Newton’s method
Note that the algorithm presented below can also be applied for fast evaluation of Sy, for rational a
s case, a 1s an algebraic number of degree 1).

. a be a real algebraic number of degree t > 1 and h(z) be a polynomial with integer coefficients such
1s 1ts root, 1.e.,

h(z) = hyz* + o1zt~ 4+ hiz+ho, hyheoy,... hi, ho are integer, ¢ > 1, (32)
h(a) = 0. (33)
that 0 < a < 1. Let us evaluate the sum S, taking into account that a satisfies Eq. (33). As in the
hm presented above, take r+ 1 = 29 (¢ > 1, 2971 < 3n < 29) terms of the series (27) and let the
1s Sr41-0(0), v =0,1,...,r, be defined by the equalities
nr—u

Sr+1-0(0) = (=1)"7" (r—v)i(r—v+a)mtt’

definition of S,,,, we have
Sm = 51(0) 4+ S2(0) + ... + Sr11(0). (34)

uation of 5y, is done in ¢ steps as follows. Successively joining the summands S,, in (34) in pairs
ing the common multiplier out of the parentheses, we have at the first step

1
S = S1(1) + Sa(1) + ... + S (1), r‘_—_r—; ,
(_1)r—2unr—2u (__l)r...'zu..ln,-_zu__;

D= Sea(0)+ Sro2r-1(0) = )=t a7t == )r—2v— 1+ )t
r—2u—1nr_2”—lﬂ"l-l’(l)
(r—2v)
n r—2v
(r — 2w+ a)mt! + (r—2v—1+4a)mt!
(r=2v)(r—2v+a)™* —n(r—2v — 1+ a)™H!

- (r—2v—1+a)?*(r — 2v +a)m+! ' (35)

= (-1)

) = -

t (=1)7"2=1 = 1, hence, for r satisfying condition (30), the numerator of (35) is
(r—2)(r—2v+a)™" —n(r-2v—14a)" > 0.

g the parentheses in (35), represent f,,_,(1) as a fraction whose numerator and denominator are
ials in a of degrees m + 1 and 2m + 2 respectively:

Brr (1) = j——(%) (36)
m+1 2m+2
arl—l‘(l) = Z Arx—"(k: 1)ak! 6"1-”(1) = Z Df‘l—l’(eyl)a£> (37)
k=0 £=0
Arl_u(k’l) _ (m,-:— l) ((7-_21/)'"+2‘k—n(7'—2u— 1)m+l-—k)’ (38)
De_o(61) = ) ("‘Z 1) (mg: 1)(1- C gyt (p g ymti—h (39)

b +ey=t
0<8,,t2<m+1



Recall that if r satisfies (30), we have in (38)

(r = 20)"F2k _p(r — 20 — )™mHIE 5,

At the first step, we compute, according to (38) and (39), the values

Arl—u(ky 1):

Drl—U(ey 1):

which are integer.
At the second step, we have

where

Sm
SY‘2—V(2)

Bra-v(2)

It follows from (36) that §,,-,(2) can be represented as a fraction:

Otr2__,,(2) =
6"2—”(2) =

i

nzarl—Zu(l)érl-—?u—l(l) + (7' - 22”)(7' - 2%y~ 1)arl—2u—-1(1)5r1—2u(1);

k=0,1,2,...,m+1,

£=0,1,2,...,2m+

S1(2)+ S2(2)+ ...+ S, (2),

Sn—?v(l) + Srl—2u—l(1) =n

Bry-v(2)

6r1—2u(1)6r1——2u—1(1)~

2, v=0,1,2,..

_ (1,-2_,,(2)

5 (D)’

l/:0,1,2,‘..,7‘1—

1,

.,7'1—1,

r+1
r =
1 2 )
r+1
r = )
2

re=2"1r = 27%(r + 1),
r—2%,-3 1872—11(2)

(r—22)!"
n2B:, —a, (1) + (r — 221/)(7‘ - 220 — )8, —2,21(1).

Taking (37)-(39) into account, let us multiply the polynomials in (40) and (41) and, removing the paren-
theses, represent «,,_,(2) and §,,_,(2) as the following polynomials:

where

Apa—u(k

,2)

DPQ—V(EV 2)

3Im+43

(1,2_,,(2) =

> Arpeu(k,2)
k=0

4m+-4

6"2—”(2) =

>

ki+ka=k

> Dru(£,2)
=0

a*,

at,

[n*Ar,—20(k1, 1) Dy, 9y 1 (K2, 1)

0<k1<m+1;0<k2<2m+2
+ (r=2%0)(r— 2% — 1) Ay, —2—1(k1, 1) Dy, 20 (k2, 1)],

Dy, —2,(€1,1)Dy, —9u—1(€2,1).

2

L4l =t

0<8,<2m+2;0<¢E,<2m+2

At the second step, we compute the integer values

A"Q—‘/(kr 2))
D"z—l’(gl 2):

k=0,1,2,...,3m+3,
£=0,1,2,...,4m+4,

according to (42) and (43). And so forth.
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At the ith step (we assume that 1 <7 < go < g, where qq is defined by the following two inequalities:
2007 (m + 1) <t < 29°(m + 1), (44)
and, hence, qo > | since t > 1), we have
Sm = SIA)+ S+ ... +85.G), m=2"tr =27 (r+1),
Srcsli) = Serrmanli= Db Sny gy (i— 1) = nrremzn Pror(

(r—27)1"
(r —2')!

Br-u(i) = n2"‘ﬁr._._zu(i—1)+mﬁ,._,_ZV_l(i—l),

where

fonl) = 5=, (45)

(2= 1)(m+1) 2 (m+1)

ar_y(i) = DD PO (3% L S (3 SR N » M (24 LA (46)
{=0

k=0

Aroeu(k, i)

Z [nZl_’Ar._l—ml(klyi'—I)Dr;—l‘2"_l(k2’i~ 1)
kit+ka=k
0k 1 <(2' 1= 1)(m+1)
0<kz<2' = (m+1)

r— 20)! . .
(.,. __(21',/ _ 2)i_1)|Ar--1—2u—l(kl:l - I)Dr._l—2y(k2,z - 1)], (47)
Dy,_,(€,3) = > Dy —2,(81,3— VDr_, —2p—1{f2,i = 1). (48)

L=t
0<,<2t=(m+1)
0<e<2:-1(m+1)

At the ith step, we compute the integer values

Ar_o(k,yd),  £=0,1,2,...," = D(m+1), v=01,2,...,m—1, rn=27(r+1),

LA ]

Dr_u(£,9), £=0,1,2,...,2(m+1), v=0,1,2,...,m—1, r=27(r+1),

according to (47) and (48). After the goth step (go is defined by inequalities (44), 1 < go < g¢), the expression
(45) is a fraction whose numerator and denominator are polynomials in a of degrees (27 — 1)(m + 1) and
299(m + 1) respectively. Before proceeding to the (go + 1)th step, let us reduce these polynomials modulo
the polynomial h(z) with z = a. Consider these reductions in more detail.

Let
A(z) - ZAk:L'k = Auxu—{—Au_l.’L‘u—l+--~+Alx+AO; (49)
k=0
D(z) = Y D' = Dyz®+ Dy_12* " +...+ Diz + D, (50)
2=0
where
w= (2 -1 (m+1), w=20(m+]l), (51)
Ak = Arqo—l/(k)q()): Dl = D"qo_"(elqo)’ (52)

t .

and let A(z) = ) h;z* be the polynomial defined by (32) and (33). Recall that (47), (48), and (52)
t=0

imply that the numbers Ag, & = 0,1,2,...,u, and Dy, £ = 0,1,2,...,w, arc integer and the numbers
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hi, 1 =0,1,2,...,¢, are integer by definition. By definition (33), we have h(a) = 0. It follows from (46),
(47), and (49)-(52) that

Ala) = “rqo—u(‘lo)) D(a) = ‘srqo—v(qo)~ (53)

Let us divide the polynomials A(z) and D(z) by h(z) with remainders R(x) and Q(z) respectively:
A(z) = A(z)B(z)+ R(z), (54)
D(z) = h(z)G(z)+ Q(z). (55)

Thus,

u t u-—t t—1
ZA[;Z‘IC = Zh,‘l‘iZBJ‘l‘j +ZRk$k, (56)
i=0 k=0

k=0 i=0
w t .w-—t ] t—1
Y Dt = Y ket Gyl 4+ Qeat (57)
e=0 =0 ji=0 £=0
By (56), we have
Ap = > hiBj, k=uu—1lu—2. . t+11 (58)
i+j=k
0<i<t; 0<j<u—t
Hence,
1 =
Bu—-t—j = }_l- (Au—j*ZBu—t—-iht—j-H) ’ j:O)ly?‘)'-')u'—t' (59)
¢ i=0
Similarly,
D, = > hG;, b=w,w—lw=2,. . . t+1,1, (60)
i+j=¢
0<i<t; 0<j<w—1t
1 =
Gw_g_j = i Dw—j“ZGw—t—iht—j-q—i) , 71=0,1,2,...,w—1t. (61)
t t=Q

Then, for the coefficients Ry and @ of the remainders, we obtain from (56) and (58) and, respectively, (57)
and (60) that

Ry = Ap-— > hiBj, k=t—-11-2..1,0, (62)
i+i=k
0<i<t,0<j<u—t
Q: = D, — > hiG;, £=1—-1,1-2,...,1,0, (63)
i+j=¢

0<i<t, 0<j<w~t

where the coefficients B; and G; are defined by (59) and (61) respectively.
It follows from (33) and (53)-(55) that

R(a) = A(a) = oy -v(g0),  Qfa) = D(a) = 6, -4 (q0), (64)
where

t-1

R(IL‘) = ZR[C"L'L,
k=0
t-1

Qz) = > Q'
£=0
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and the coefficients Ri and @, are defined by (62) and (59) and, respectively, (63) and (61) and are not
integer in general. It follows from (59) and (61) that the numbers R 'Ry k=t-1,1-2,...,1,0, and
R Qe =1 — 1,6 —-2,...,1,0, must be integer. Since

arqo—-u((IO) _ R(a)

()~ Qa) (65)

:Br,m —u(QO) =

due to (45) and (64), taking (51) into account, let us multiply the numerator and denominator of (65) by
h“ "'t Then we obtain

_ IEl(a)
— Qi(a)’

Br gy —v(g0) (66)

-1 -1
where Ri(a) = Y. Ria* and Qi(a) = Y @,a’ are polynomials in a of degree t — 1 with integer coefficients
k=0 (=

L= hYTMRy Qi=hMTIQ,, k=0,1,2,..t-1, £=0,1,2,...,t—1. (67)

Hence, at the qoth step (go is defined by (44)), we compute integer numbers R}, k¥ = 0,1,2,...,t - I,
according to (67), (62), (59), and (47) with 7 = ¢o and integer numbers @}, £ =0,1,2,...,t - 1, according
to (67), (63), (61), and (48) with i = go. Then we have the fraction (66) for Br, . (g0),: ¥ =10,1,2,..., 19—
1, rgy = 279 (7 + 1), and at the (go + 1)th step we compute the integer coefficients of the polynomials in the
numerator and denominator of §;, ,,—v(qo+1), ¥ =0,1,2,..., 7441 = 1, rg41 = 2797 (r + 1), according
to (47) and (48) with ¢ = ¢¢ + 1. Then we reduce, as is described above, the numerator and denominator
of Br,, 4 —»(q0 + 1) modulo k(z) with = a. Multiplying the numerator and denominator of the reduced
fraction by a common factor, we obtain for B, ,,-.(g0 + 1) a fraction whose numerator and denominator
are polynomials in a of degree t — 1 with integer coefficients. And so forth. We make the reduction at each
step i = go,q0 + 1,90 + 2,...,q. Since the coefficients and the degree of h(z) are absolute constants, these
reductions do not worsen the estimate for the complexity of the computations done. At the final gth step,
after the reduction we have

S = 5r,(0) = Si(0) = 22, (68)
where
Broa) = ‘;‘((;’)) , (69)
t—1 i1
ar,(9) =Y Ria*,  &.(9) =) Qua, (70)
k=0 =0

1~2k and Q; are integer. 5
To compute a,,(q) and & (g) according to (70) using the coefficients Ry and Q. already computed
and taking into account that a is an algebraic number, t = const, and also to compute the fraction g, (q)
according to (69),
O(M(n)) (71

operations are required. To compute (68), taking (30) into account,
O (M (log n)n log n) (72)

operations are required. It follows from (71), (72), and (31) that the evaluation of S, for a real algebraic
a requires

O(M(n)log?n)

operations.
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Consider the sum (26). In (26), computation of the value of log?"™n, 0 < m < j, 1 < j < s, requires
O(M (logn) log ?n) operations. Computation of n® = €2!°%6"  where a is an algebraic number, requires
O(M (n)log ?n) operations.

As in [6], to evaluate the sum

] Hogi—m
jllog n
DG iy ey (73)

accurate to 277, it suffices to compute S, and log7 ~™n with accuracy to 27", Estimating the absolute
value of S, we find from (73) and (26) that to compute the sum A} accurate to 27", it suffices to compute

S and n% with accuracy to 27827 (< a < 1.

m=0

00
The estimates given above imply that the evaluation of the integral J; = [ e~'t*"!log/t dt, where a is
0

a real algebraic number, 0 < a < 1, requires
O(M(n)log?n)

operations. Thus, the following theorem holds.

Theorem 1. For the evaluation complezity of the Hurwitz zeta function { = ((s,a) for any natural
s=k, k> 2, and any real algebraic a, we have the estimate

s¢(n) = O(M(n)log?n).

6. Theorem on the evaluation complexity for Dirichlet series

A corollary of Theorem 1 is Theorem 2 on the evaluation complexity of the Dirichlet L-series L(s, x)
for any natural s = k, k£ > 2.

Let m be an integer number, m > 2, and x(£) be any Dirichlet character modulo m. Then, for Res > 1,
we have

k=1 t=1 k=0 (IC+ —)3 m? =1 m
Let us use the constructive definition of x({) (see, e.g., [18, p. 106]).
Let m = 2°p{' ... p%r be a canonical decomposition of m. Let the numbers ¢, ¢y, and ¢, be such that
c=co=1 if a=0 or a=1,

c=2,¢=2""% if a>2,
= p(pS)=pdr —p2Tl w=1,2,.. . r
Let also g, be the smallest primitive root modulo p3¥, v = 1,2,...,r. Let ¥,70,71,-..,7- be the index

system of a number £ modulo m, 1 < £ < m, ged(f,m) =1, i.e., for the numbers v, v0,71,...,7 we have
the congruences

£=(-1)"5" (mod 2%),
¢=g]" (mod p}),

(75)
£=g) (mod pr).
Let the numbers R, Ry, 121, ..., R, be any roots of the equations
R =1, R =1, R =1, ce R = 1. (76)



Note that the roots of the equation R* = 1 are the numbers
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"X, r=01,2...,2-1 (77)
Then
R'R°R)* ... R} if ged(4,m) =1,
X(g):' 0 1 r l gc ( m) (78)
0 if ged(¢,m) > 1.
The function x(¢) thus defined for each integer £ is called the Dirichlet character modulo m.
If one knows the numbers ¥,%,71,..-,7 from (75), one can evaluate any Dirichlet character x(¢),
ged(€,m) = 1, according to (76)-(78) accurate to 27" in
O(M(n)log?*n) (79)

operations (fast evaluation of exp(z) for any complex argument z is described in detail in {3]). It follows
from (74) that the number of operations sufficient to compute L(s, x) accurate to 27" is also given by (79).

Theorem 2. For the evaluation complezity of the Dirichlet L-series L(s, x) for any natural s =k, k >
2, and any Dirichlet character x(€) modulo m, m > 2, m being an inleger, we have the estimate

st(n) = O(M(n)log?n).
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